Lagrange interpolating polinomial - Übersetzung nach russisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Lagrange interpolating polinomial - Übersetzung nach russisch

POLYNOMIALS USED FOR INTERPOLATION
Lagrange form; Lagrange polynomials; Lagrange interpolation; Lagrange interpolating polynomial; Lagrangian interpolation; Lagrange interpolant; Lagrange interpolation formula; Barycentric Interpolation; Lagrangian Interpolation; Lagrange interpolation polynomial
  • Example of interpolation divergence for a set of Lagrange polynomials.

Lagrange interpolating polinomial      
интерполяционный полином Лагранжа
Lagrange multiplier         
A METHOD TO SOLVE CONSTRAINED OPTIMIZATION PROBLEMS
Lagrange Multiplier; Lagrangian multiplier; Lagrangian Multiplier; Lagrangian Function; Lagrangian multipliers; Lagrange multiplier method; LaGrange multiplier; Lagrangian multiplicator; Lagrange's method; Lagrange's undetermined multiplier; Lagrangian function; Lagrange function; Method of Lagrange multipliers; Method of Lagrange Multipliers; Lagrange multiplier principle; Lagrange multipliers; Lagrangian minimization; Lagrange multipliers method; Lagrangian expression
множитель Лагранжа
Lagrange interpolation formula         
интерполяционная формула Лагранжа

Definition

ЛАГРАНЖ
(Lagrange) Жозеф Луи (1736-1813) , французский математик и механик, иностранный почетный член Петербургской АН (1776). Труды по вариационному исчислению, где им разработаны основные понятия и методы, математическому анализу, теории чисел, алгебре, дифференциальным уравнениям. В трактате "Аналитическая механика" (1788) в основу статики положил принцип возможных перемещений, в основу динамики - сочетание этого принципа с принципом Д'Аламбера (принцип Д'Аламбера - Лагранжа), придал уравнениям движения формулу, названную его именем.

Wikipedia

Lagrange polynomial

In numerical analysis, the Lagrange interpolating polynomial is the unique polynomial of lowest degree that interpolates a given set of data.

Given a data set of coordinate pairs ( x j , y j ) {\displaystyle (x_{j},y_{j})} with 0 j k , {\displaystyle 0\leq j\leq k,} the x j {\displaystyle x_{j}} are called nodes and the y j {\displaystyle y_{j}} are called values. The Lagrange polynomial L ( x ) {\displaystyle L(x)} has degree k {\textstyle \leq k} and assumes each value at the corresponding node, L ( x j ) = y j . {\displaystyle L(x_{j})=y_{j}.}

Although named after Joseph-Louis Lagrange, who published it in 1795, the method was first discovered in 1779 by Edward Waring. It is also an easy consequence of a formula published in 1783 by Leonhard Euler.

Uses of Lagrange polynomials include the Newton–Cotes method of numerical integration, Shamir's secret sharing scheme in cryptography, and Reed–Solomon error correction in coding theory.

For equispaced nodes, Lagrange interpolation is susceptible to Runge's phenomenon of large oscillation.

Übersetzung von &#39Lagrange interpolating polinomial&#39 in Russisch